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ABSTRACT: Low power consumption and smaller area are some of the most important 

criteria for the fabrication of DSP systems and high performance systems. Optimizing the speed 

and area of the multiplier is a major design issue. However, area and speed are usually 

conflicting constraints so that improving speed results mostly in larger areas. Based on a specific 

feature of redundant representation in a class of finite fields, two new multiplication algorithms 

along with their pertaining architectures are proposed to alleviate this problem. Considering 

area-delay product as a measure of evaluation, it has been shown that both the proposed 

architectures considerably outperform existing digit-level multipliers using the same basis. It is 

also shown that for a subset of the fields, the proposed multipliers are of higher performance in 

terms of area-delay complexities among several recently proposed optimal normal basis 

multipliers.  Further, this project is enhanced by using parallel in parallel out concept for latency 

optimization for 32 bit multiplier. 

INDEX TERMS: Multiplication, latency optimization, Redundant binary, Error correction, 

Normal Binary. 

 

INTRODUCTION: FINITE FIELD 

multiplication over Galois Field is a basic 

operation frequently encountered in 

modern cryptographic systems such as the 

elliptic curve cryptography (ECC) and 

error control coding [1]–[3]. Moreover, 

multiplication over a finite field can be 

used further to perform other field 

operations, e.g., division, exponentiation, 

and inversion [4]–[6]. Multiplication over 

can be implemented on a general purpose 

machine, but it is expensive to use a 

general purpose machine to implement 

cryptographic systems in cost-sensitive 

consumer products. Besides, a low-end 

microprocessor cannot meet the real-time 

requirement of different applications since 

word- length of these processors is too 

small compared with the order of typical 

finite fields used in cryptographic systems. 

Most of the real-time applications, 

therefore, need hardware implementation 

of finite field arithmetic operations for the 

benefits like low-cost and high-throughput 

rate. The choice of basis to represent field 

elements, namely the polynomial basis, 

normal basis, triangular basis and 

redundant  basis (RB) has a major impact 

on the performance of the arithmetic 

circuits. The multipliers based on RB have 

gained significant attention in recent years 

due to their several advantages. Not only 

do they offer free squaring, as normal basis 

does, but also involve lower computational 
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complexity and can be implemented in 

highly regular computing structures. There 

are different types of bases to represent 

field elements, those are polynomial basis, 

normal basis, triangular basis and RB, and 

the choice of representation of field 

elements has a major impact on the 

performance of the arithmetic circuits. 

Several algorithms for basic arithmetic 

operations in GF (2𝑚) are suitable for both 

hardware and software implementations 

have been recently developed. Because of 

several advantages of the RB based 

multipliers they have gained significant 

attention in recent years.  

MULTIPLIER ARCHITECTURE, DL-

SRB-A: An architecture for the proposed multiplier can be constructed based on the steps described in Algorithm 1 at. Fig. 1 shows the proposed architecture, hereafter referred to as digit-level symmetrical RB type−a multiplie  (DL-SRB-a). From top to bottom, the architecture consists of an n-bit circular shift register which should be 

initialized with the coordinates of operand 

B. This shift register provides inputs to a 

wire expansion module with n inputs and 

w(n − 1) outputs followed by ((n − 1)/2) 

identical modules (M1, M2, . . . , 

M(n−1/2)) shown inside the dashed boxes. 

At th  bottom, there is a network of XOR 

gates adding 2w outputs of each module 

Mj together to form output coordinates. 

Each module Mj is made of a layer of 2w 

AND gates receiving the outputs of the 

wire expansion module as their 

 

 
Fig. 1. Proposed architecture for digit-level 

SIPO RB multiplier, DL-SRB-a. 

first input set. The second input set is 

received from certain bits of operand A in 

a digit-serial fashion. Each AND gate is 

followed by an XOR gate connected 

immediately to a flip-flop. 

The output of the flip-flop is fed back to 

the XOR gate forming an accumulation 

unit together. Two AND gates along with 

their respective accumulation units form a 

structure responsible 

to realize the operations performed in 

Steps 5 and 6 of Algorithm 1. One of these 

structures is shown in the Fig. 1 inside a 

dotted block for j = 0 and k = 0. In total, 

the proposed architecture contains w(n − 

1/2) such structures, each of which consists 

of two AND gates, two XOR gates, and 

two flip-flops to generate and store p(_) j,k 

and q(_) j,k in each clock cycle. As 

mentioned earlier, input A should be fed 

into the multiplier in a digit-serial fashion 

(comb style). According to (13), the 

multiplication operation is performed 

using aˆi coefficients which are necessarily 

equal to the (n − 1/2) coordinates of A 

starting from coordinate number 1 to (n − 

1/2). We will refer to this set of 

coordinates of A as ˆA. Let ˆA be divided 

into w parts of length d in the same way we 

did earlier for A, as 

 

 
 

Note that ˆA is padded with wd −(n − 1/2) 

zeros in the mostsignificant word. In the 

first clock cycle, the first bits of every word, 

i.e., a1, ad+1, . . . , a(w−1)d+1 form an 

input set to the multiplier. In the second 

clock cycle, the inputs would be the set of 

second bits of every word, a2, ad+2, . . . , 

a(w−1)d+2, so on and so forth. 
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Fig.2. Circular n-bit shift register to store 

coordinates of operand B. 

 

For given j and k, in each clock cycle, the 

variable of function ϕ in bϕ( j−kd−_) 

decreases by one in Step 5. An n-bit 

circular shift register can be used, as shown 

in Fig. 2 by R1, to generate the required 

coefficients in Step 5. This circular shift 

register should be initially loaded as, from 

left to right, bn−1, bn−2, . . . , b0. On the 

contrary, the variable of function ϕ in bϕ( 

j+kd+_) in Step 6 increases by one in each 

clock cycle  In this case, a similar circular 

shift register, namely, R2, with the same 

initial contents but with the opposite shift 

direction should be utilized to produce the 

required coefficients. 

 

MULTIPLIER ARCHITECTURE, DL-

SRB-B: 

At the expense of a slight increase in the 

critical path delay, the number of logic 

gates and flip-flops used in the architecture 

of Fig. 1 can be significantly reduced. 

Starting from the closed formula of (13), 

instead of the decomposition shown in 

(14), define two intermediate signals s(_) j,k 

and r (_) j,k , j = 1, 2, . . . , (n − 1/2) and k 

= 0, 1, . . . ,w − 1 for _ = 1, 2, . . . , d as 

 
 

 
Fig. 3. Proposed architecture for digit-

Level SIPO RB multiplier, DL-SRB-b. 

 

r (d) j,k holds the value of signal r after d 

clock and is equal to 

 

 
 

 
The new algorithm can be obtained 
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Note that in each clock cycle, Steps 5 and 

6 should be computed in serial. Fig. 3 

shows the modified architecture referred to 

as DL-SRB-b. As can be seen from Fig. 3, 

the new architecture is similar to the 

previously proposed architecture, DL-

SRB-a, in the sense that it utilizes the same 

wire expansion module and the same n-bit 

circular shift register to store operand B. 

Operand A is also fed into the multiplier in 

the same way as earlier. The main 

difference between the two architectures 

originates from the difference between the 

two modules shown inside the dotted 

boxes in Figs. 1 and 3. In type-a 

architecture, one bit of operand B is 

multiplied by one bit of operand A, and 

the resulting partial product is stored 

separately in its respective accumulation 

unit. On the contrary, in type-b 

architecture, two bits of operand B are first 

added together before they enter the AND 

gate and be fed into the accumulation unit. 

As a result, the critical path delay of the 

new architecture changes from TA + TX to 

TA + 2TX. In the recent architecture, the 

number of accumulation units and AND 

gates are reduced by half from w(n −1) to 

w(n − 1/2) each. Since half of the addition 

operations are performed before the 

accumulation units, the size of the binary 

XOR tree is also reduced from 2w − 1 to w 

− 1. Similar to DL-SRB-a, the 

multiplication delay of DL-SRB-b is 

composed of two parts: d and dex. The 

first part corresponds to Steps 5 and 6 of 

the algorithm caused by modules Mj 

during d clock cycles. The second part 

corresponds to the time delay of a w-input 

XOR gate or a binary tree of (w − 1) two-

input XOR gates. Assuming that a binary 

tree of two-input XOR gates is used, the 

total number of clock cycles required to 

complete a single multiplication 

PROPOSED TECHNIQUE: 

The following scheme describes 

the school method for multiplication of 

two n-bit numbers x and y and addition of 

a number s for n = 3. The generalization to 

arbitrary n is obvious. 

  

By introducing additional variables for 

intermediate result bits and additional 

subscripts to make all variables distinct this 

scheme is extended to the following 

scheme. 

  

The values of the new variables of the 

second scheme are defined in terms of the 

variables of the first scheme as: 

s0j   =   sj   for   j  {0, ..., n-1} 

xi0   =   xi   for   i  {0, ..., n-1} 

y0j   =   yj   for   j  {0, ..., n-1} 

  

Then we have as the result of the 

multiplication/addition: 

snj   =   rj   for  j  {0, ..., 2n-1} 
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The resulting multiplication unit is a linear 

array of processing elements, shown in 

Figure 1 for an operand length of n = 3. 

Each processing element performs the 

computation determined by the recurrence 

equations. 

The input variable x is held in the same 

processor in each time step. Thus, this 

input has to be provided in a bit-parallel 

way. However, a timing analysis shows 

that x0 is first required at 

time Z(0 0)
T

 = 0, x1 is first required at 

time Z(1 0)
T

 = 1, and so on. Thus, 

input x can be shifted into the multiplier 

serially and latched at appropriate times. 

 

 

Figure4 : Parallel  multiplier for three-bit 

numbers 

 

For n-bit operands, the multiplier has an 

execution time of 3n cycles. It 

takes n cycles before the first result bit is 

produced at the output of the multiplier, 

and then another 2n cycles for output of 

the 2n result bits. However, successive 

multiplications can be pipelined in a way 

such that the input is provided while the 

last n result bits are being output. Thus, the 

execution time drops to 2n. 

 

RESULT: 

 
 

CONCLUSION: 

Two new digit-level SIPO finite field 

multipliers using  redundant representation 

have been proposed. Numerical 

complexity comparison showed that both 

new architectures have the lowest delay 

cost compared with the existing RB 

architectures. the proposal can show better 

performance than ONB multipliers, if 

existed, and can show much better 

performance than NB multipliers 
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