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ABSTRACT: Low power consumption and smaller area are some of the most important
criteria for the fabrication of DSP systems and high performance systems. Optimizing the speed
and area of the multiplier 1s a major design issue. However, area and speed are usually
conflicting constraints so that improving speed results mostly in larger areas. Based on a specific
feature of redundant representation in a class of finite fields, two new multiplication algorithms
along with their pertaining architectures are proposed to alleviate this problem. Considering
arca-delay product as a measure of evaluation, it has been shown that both the proposed
architectures considerably outperform existing digit-level multipliers using the same basis. It 1s
also shown that for a subset of the fields, the proposed multipliers are of higher performance in
terms of area-delay complexities among several recently proposed optimal normal basis
multipliers. Further, this project is enhanced by using parallel in parallel out concept for latency
optimization for 32 bit multiplier.

INDEX TERMS: Multiplication, latency optimization, Redundant binary, Error correction,
Normal Binary.

INTRODUCTION: FINITE FIELD

word- length of these processors is too

multiplication over Galois Field 1s a basic
operation  frequently encountered in
modern cryptographic systems such as the
elliptic curve cryptography (ECC) and
error control coding [1]-[3]. Moreover,
multiplication over a finite field can be
used further to perform other field
operations, e.g., division, exponentiation,
and inversion [4]-[6]. Multiplication over
can be mmplemented on a general purpose
machine, but it is expensive to use a
general purpose machine to implement
cryptographic  systems In  cost-sensitive
consumer products. Besides, a low-end
microprocessor cannot meet the real-time

requirement of different applications since

small compared with the order of typical
finite fields used in cryptographic systems.
Most of the real-ime applications,
therefore, need hardware implementation
of finite field arithmetic operations for the
benefits like low-cost and high-throughput
rate. The choice of basis to represent field
elements, namely the polynomial basis,
normal  basis, triangular basis and
redundant basis (RB) has a major impact
on the performance of the arithmetic
circuits. The multipliers based on RB have
gained significant attention in recent years
due to their several advantages. Not only
do they offer free squaring, as normal basis
does, but also involve lower computational
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complexity and can be implemented in
highly regular computing structures. There
are different types of bases to represent
field elements, those are polynomial basis,
normal basis, triangular basis and RB, and
the choice of representation of field
elements has a major 1mpact on the
performance of the arithmetic circuits.
Several algorithms for basic arithmetic
operations in GF (2m) are suitable for both
hardware and software implementations
have been recently developed. Because of
several advantages of the RB based
multipliers they have gained significant
attention In recent years.

MULTIPLIER ARCHITECTURE, DI-
SRB-A:

mitialized with the coordinates of operand
B. This shift register provides inputs to a
wire expansion module with 7 inputs and
w(n — 1) outputs followed by (2 — 1)2)
identical modules (M1, M2, . . . ,
M@r-1,2) shown inside the dashed boxes.
At th bottom, there 1s a network of XOR
gates adding 2w outputs of each module
Mj together to form output coordinates.

Fach module Mjis made of a layer of 2w

AND gates receiving the outputs of the
wire expansion module as their

7 B B
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Fig. 1. Proposed architecture for digit-level
SIPO RB multiplier, DL-SRB-a.

first input set. The second input set is
received from certain bits of operand A in
a digit-serial fashion. Each AND gate is
followed by an XOR gate connected
immediately to a flip-flop.

The output of the flip-flop 1s fed back to
the XOR gate forming an accumulation
unit together. Two AND gates along with
their respective accumulation units form a
structure responsible

to realize the operations performed in
Steps 5 and 6 of Algorithm 1. One of these
structures 1s shown in the Fig. 1 inside a
dotted block for y= 0 and & = 0. In total,
the proposed architecture contains w(n —
1,2) such structures, each of which consists

of two AND gatnsarohiteX@R fgatehe prdposed multiplier ¢

two flip-flops to generate and store p(_) j,k
and ¢() sk in each clock cycle. As
mentioned earlier, put A should be fed
mto the multiplier in a digit-serial fashion
(comb style). According to (13), the
multiplication operation 1s performed
using a” 1 coefficients which are necessarily
equal to the mm — 1/2) coordinates of A
starting from coordinate number 1 to (1 —
12). We will refer to this set of
coordinates of A as “A. Let ~A be divided
mto wparts of length din the same way we
did earlier for A, as

A=) o Dy 0 0.0,
.

A A |
I A

Note that "~ A is padded with wd —@m—1,2)
zeros in the mostsignificant word. In the
first clock cycle, the first bits of every word,
Le., al, adrl, . .., aw—1)d+1 form an
mput set to the multiplier. In the second
clock cycle, the inputs would be the set of
second bits of every word, a2, ad*+2, . . .,

am—1)d+2, so on and so forth.
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Fig.2. Circular z+bit shift register to store
coordinates of operand B.
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For given j and %, in each clock cycle, the
variable of function ¢ i bp( jkd—_)
decreases by one i Step 5. An nbit
circular shift register can be used, as shown
i Iig. 2 by Rl, to generate the required
coefficients in Step 5. This circular shift
register should be initially loaded as, from
left to right, bir—1, bn—2, . . ., K0. On the
contrary, the variable of function ¢ in bg(
Jrkdt_) in Step 6 increases by one in each
clock cycle In this case, a similar circular
shift register, namely, /2, with the same
mitial contents but with the opposite shift
direction should be utilized to produce the
required coefficients.

MULTIPLIER ARCHITECTURE, DL-
SRB-B

At the expense of a slight increase in the
critical path delay, the number of logic
gates and flip-flops used in the architecture
of Fig. 1 can be significantly reduced.
Starting from the closed formula of (13),
mstead of the decomposition shown in
(14), define two intermediate signals s(_) j,k
andr()sk,j=1,2,...,m—1/2)and k
=0,1,...,w—1for_=1,2,...,das

G
“fk = [bwu—kd—n + by(jhd40)]

k =0 and r! k = r( . -I—a(;(m,”.sﬂ

J'

k
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Fig. 3. Proposed architecture for digit-
Level SIPO RB multiplier, DL-SRB-5.

r (d) j,k holds the value of signal r after d

clock and 1s equal to

d
= Zfﬁ(mn[bp( j-ki~) + byj+kd+0)
(=]

e —— 0
e — E : Cad
(.J _ rj_k -
o ——

The new algorithm can be obtained
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)
5;";( = [b@{j—kd—[] + bw(j+kd+f)]
O (), 0
r fﬁ =Ty S
end for
end for
end for
for all values of j=12,... Q compute n parallel
for all values of k = 0,1,...,w - 1, compute in
seral ’
I I ]
G=Lio i

Note that in each clock cycle, Steps 5 and
6 should be computed in serial. Fig. 3
shows the modified architecture referred to
as DL-SRB-A. As can be seen from Fig. 3,
the new architecture 1s similar to the
previously proposed architecture, DIL-
SRB-a, in the sense that it utilizes the same
wire expansion module and the same n-bit
circular shift register to store operand B.
Operand A is also fed into the multiplier in
the same way as earlier. The main
difference between the two architectures
originates from the difference between the
two modules shown inside the dotted
boxes in Figs. 1 and 3. In type-a
architecture, one bit of operand B is
multiplied by one bit of operand A, and
the resulting partial product is stored
separately n its respective accumulation
unit.  On the contrary, in type-b
architecture, two bits of operand B are first
added together before they enter the AND
gate and be fed into the accumulation unit.
As a result, the critical path delay of the
new architecture changes from 74 + TX'to
TA + 27X, In the recent architecture, the
number of accumulation units and AND
gates are reduced by half from w(m —1) to
win — 1,2) each. Since half of the addition
operations are performed before the
accumulation units, the size of the binary

XOR tree 1s also reduced from 2w—1 to w

— 1. Simmlar to DL-SRB-a, the
multiplication delay of DL-SRB-p/ is
composed of two parts: d and dex. The
first part corresponds to Steps 5 and 6 of
the algorithm caused by modules My
during d clock cycles. The second part
corresponds to the time delay of a n=input
XOR gate or a binary tree of (w— 1) two-
mput XOR gates. Assuming that a binary
tree of two-input XOR gates 1s used, the
total number of clock cycles required to

complete a single multiplication

PROPOSED TECHNIQUE:

The following scheme describes
the school method for multiplication of
two r+bit numbers xand yand addition of
a number s for n= 3. The generalization to

arbitrary n1s obvious.

¥E ¥ FE E
FE  F1 ¥E - X
FE WL WE - &R

P - R - B

By introducing additional variables for
itermediate result bits and additional
subscripts to make all variables distinct this
scheme 1is extended to the following
scheme.

The values of the new variables of the
second scheme are defined 1n terms of the
variables of the first scheme as:

s = s for jEAO, ..., n-1}
x = x for 71=/{0, ..., 1}
w = y for jEAO, .., n-1}

Then we have as the result of the
multiplication/addition:

s = 1 for jEAO, .., 2n-1}
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The resulting multiplication unit is a linear
array of processing elements, shown in
Figure 1 for an operand length of n=3.
Fach processing element performs the
computation determined by the recurrence

equations.

The input variable xis held in the same
processor mn each time step. Thus, this
mput has to be provided in a bit-parallel
way. However, a timing analysis shows
that x 1s first required at
time Z00)' =0, xis first required at
ttme Z(1 0)' =1, and so on. Thus,
mput xcan be shifted mto the multiplier

serially and latched at appropriate times.

input

00 1 —
wnt0p o o

i
“%77

fullader full adder fullader
0 1 2
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W r r r
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Figure4 : Parallel multiplier for three-bit
numbers

For n-bit operands, the multiplier has an
execution time of  3ncycles. It
takes 11 cycles before the first result bit is
produced at the output of the multiplier,

and then another 2n cycles for output of

the 2nresult bits. However, successive
multiplications can be pipelined in a way
such that the input is provided while the

last n2 result bits are being output. Thus, the

execution time drops to 2n.

RESULT:

CONCLUSION:

Two new digit-level SIPO finite field
multipliers using redundant representation
have been proposed. Numerical
complexity comparison showed that both
new architectures have the lowest delay
cost compared with the existing RB
architectures. the proposal can show better
performance than ONB multipliers, if
existed, and can show much better

performance than NB multipliers
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